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Strategy based on information entropy for optimizing stochastic functions
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We propose a method for the global optimization of stochastic functions. During the course of the optimi-
zation, a probability distribution is built up for the location and the value of the global optimum. The concept
of information entropy is used to make the optimization as efficient as possible. The entropy measures the
information content of a probability distribution, and thus gives a criterion for decisions: From several possi-
bilities we choose the one which yields the most information concerning location and value of the global

maximum sought.
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I. INTRODUCTION

The mathematical task of optimization is linked to
thermodynamics and statistical physics in more than one
way. The issue of global versus local optima is addressed by
simulated annealing [1,2]. The entire optimization algorithm
can be viewed as a finite time thermodynamic process in
which numerical efficiency can be expressed as thermody-
namical optimality [3,4]. In this contribution we use an in-
formation entropy approach to quantify the information
gained in optimization.

We propose a method to optimize stochastic functions
which is based on information entropy. By stochastic func-
tion we mean a function which cannot be evaluated precisely,
but to which the algorithm has only indirect access, e.g., via
a Monte Carlo type experiment. Thus one can only derive a
probability distribution for the stochastic function, the error
of which decreases with computational effort.

The stochastic function can be described by a scheme
for how to get an approximation of the merit function
value from the results of the random experiments and a set of
pairs (a;,b;), where the a; are the configurations and where
every b; is an instruction about how to conduct a random
experiment.

As an example, we choose stochastic functions whose b;
are Bernoulli experiments and whose domains contain a fi-
nite number of elements. The probability of the Bernoulli
experiment b; yielding a positive result is given by the value
of the stochastic merit function g; for configuration a;. The
task is to find the maximum of the g; with respect to value
and location: gu,=g(doy). The search for the optimum
should only proceed via Bernoulli experiments.
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II. INFORMATION ENTROPY STRATEGY

A. The concept

The key task of any optimization algorithm is to decide at
which location to evaluate the objective function next, based
on past evaluations. For a stochastic function the algorithm
should additionally specify the computational effort to be
invested (or alternatively the precision sought). The strategy
we propose in this contribution is based on maximizing the
expected information gained in each step. For this we use the
term “information entropy strategy.” The information en-
tropy strategy is specified so as to optimize as efficiently as
possible. What is meant by efficiency in this context? Effi-
ciency is the ratio of gain to invested effort. We measure
effort by the number of Bernoulli trials performed. The mea-
sure of gain is defined as follows. What we aspire to know
are the location and the function value of the maximum. We
do not seek to know the function value at other locations.
Consequently we introduce the probability density function
for the optimum p,,(g,i), which expresses the probability
density that the optimum occurs with configuration i and has
the value g. We refer to p,, as probability distribution for the
optimum. We measure the information we gain concerning
the optimum of the stochastic function by the decrease in
information entropy of p,,(g,i). Now the information en-
tropy strategy can be outlined. Imagine the next Bernoulli
trial is to be done for configuration j. Then we can calculate
the expectation value of the entropy change which results
from this Bernoulli trial. In order to decide the configuration
for which the next Bernoulli trials should be performed, the
expected entropy change following an additional trial at this
configuration is calculated for all configurations. We choose
that configuration with the largest expected entropy drop and
perform the next Bernoulli trial there. Because this entropy
drop is a measure of information gain and the number of
Bernoulli trials is the measure of effort, we expect the
maximum possible efficiency.

How the expected entropy changes and the probability
distribution for the optimum are calculated is detailed in
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Secs. I B-II E. Because the probability distribution for
the optimum depends on all Bernoulli trials completed so
far, the calculation of expectation values is tedious. In
Secs. I B-II E we derive simplified expressions for these
expectation values, which can be evaluated with moderate
effort.

B. Definitions

The probability density p for the value of the objective for
a given configuration i to be g, given that of n; Bernoulli
trials at that configuration k; were successful is

(l’li + 1) ! & k
i) = k) = ————g"i(1 — g)"i i 1
p(g.i) =p(g.n;.k;) Kl — k)18 (1-g) (1
The merit g is the probability that a Bernoulli trial yields
a positive result. It is restricted to the interval 0sg=<1.
The binomial distribution is

n!
P, . ,l’l,k . k _ o\ k
bin(8:72,k) = PIEET g(l-g)
For given g and n, Py;,(g,n,k) is the probability to get a
certain value k. The normalization condition for Py;,(g,n,k)

is

n
> Pyin(gon,k) = 1.
k=0

In our case, n and k are given. p(g,i) is the probability
density for g. The normalization condition is

1
f plg,i)dg=1.
0

The additional factor (n;+1) is necessary to satisfy this
condition.

The probability P, for the value of the ith configuration to
be lower than a certain value g is

g
Py(g.i) = Pb(g’nivki) = f p(x,i)dx. (2)
0

The index b signifies “below.”
If a total of m configurations were tested then the
probability P,(g) for all values to be below g is

P(e) =11 Py (g.0). 3)
i=1

The index a signifies “all below.”

Consequently the probability distribution for the optimum
Popi(g,h) of configuration & being the best and having an
objective equal to g is

Pop(8.1) = p(g. W] Py(g.0). 4)
i#*h

Note that the product extends over all configurations, except
configuration #.
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C. Entropy and information

The total information entropy S of the probability distri-
bution for the optimum as given in Eq. (4) is according to
Shannon [5]:

i=m g=1

- E popl(g»i)ln[popt(g’i)]dg‘ (5)
i=1

g=0

We base the information entropy on the probability distri-
bution for the optimum as given in Eq. (4) and not on the
probability distribution of the value of the objective as given
in Eq. (1), because we aspire to gain information about lo-
cation and value of the maximum, and not about the entire
function.

We choose to re-examine that configuration for which the
expected information gain is largest, i.e., for which the ex-
pectation value of the entropy after performing an additional
evaluation is lowest.

Calculating the total information gain in order to evaluate
which configuration yields the largest gain, i.e., which i
is the most “interesting” configuration is numerically
demanding, in particular if many configurations have been
extensively examined. The total information entropy is

gllm

> Ponl g,l)ln(P (9

g=0 i=1

p(g.i) ) de

S=-
P(g.1)

g=1 =m
__ f I[P4(6)]S pon(g.)dg

g=0 i=1
=13 o plesi) )

- \g,! B . 6
B gpop (g )m( P (o0 (6)

The first integral can be evaluated explicitly because the
sum is a total differential,

i=m

Epopt(g,z) (7)

as can be seen from Egs. (3) and (4). This reduces the first
term to

g=1 i=m
SI == f ln[Pa(g)]E popt(g?i)dg

g=0 i=1

P=1
- f In(P)dP,=1. (®)

P,=0

a

The second term is

=l p(g.0)
SII: - 2 popt(g’i)ln( . )dg
g=0 i=1 Py(g.1)

i=m

_ l p(g,z)>
-2 (ng<gj>)p(g, )1“<Pb<g,l> dg. (9)
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D. Expectation value of the entropy

When we decide to perform one Bernoulli trial for con-
figuration j, we expect the system to have a certain entropy
(S) afterwards. The entropy change depends on the outcome
of the Bernoulli trial.

The expectation value (S) after one additional event for
configuration j is

(SY=a;" +(1-a)s". (10)

Here a;=(k;+1)/(n;+2) is the probability of getting a
positive result when re-examining the configuration j which
has a record of k; positive results out of n;, and §/* is the
total entropy following a successful Bernoulli trial, where
n; and k; would both be increased by one. Consequently
1 aj= (n +1-k;)/(n;+2) is the probability for a negative
result and S’~ the entropy after a negative result if only n; is
increased by one.

E. Calculating the expected entropy change

With Egs. (9) and (10), the expected change in the total
entropy due to one additional Bernoulli trial for configura-
tion j can be calculated. Equation (10) yields

(ASY = ;8" + (1 — a;)§" - S. (11)
Later, we will use the important fact that
P} (g.)) P} (g.))
JP(O)( )+(1— )P(O)( 0 =1. (12)

This is a consequence of the fact that a priori the ex-
pected probability distribution after a measurement is equal
to the distribution before the measurement. This is a property
of all probability distributions.

Now S,8*,8~ are -calculated using Eq.
substituted into Eq. (11):

=1- 2 (H Pb(g,j))p(g,i)ln< p(g’i? )dg
g=0

(9) and

j#i Pb(g’l)
S Plg) ) (p(g,l) )
- (Pb<g,i) P& e )
[ plg.i) ) (p(g,i) )
=! L:o Fuls )2 <Pb(8 )]\ Py(g.i) de- (1)

In the following, the superscript ) refers to values cal-
culated before a new Bernoulli trial is carried out, whereas
the superscript /* refers to a value calculated assuming a
new Bernoulli trial was successful, and /= refers to a value
assuming it was unsuccessful.

Now, how does S change when one additional measure-
ment (Bernoulli trial) is successfully performed for configu-
ration j? The integrand in Eq. (13) consists of a product and
a sum. After a new measurement, one of the factors of the
product changes and one of the summands of the sum. Thus,
we can replace the initial terms by the new ones, which
yields
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g=1
Sr=1— f POVHA+T*-TO)dg.  (14)
g=0

With the following abbreviations:

vd+=-f§19912
PY(g.j)’
Pl
~ PV(g.j)’

N p(g,i)
PV (g,i)’

A im P(g.i)
4 0)(,, +
i=1 Pb (g7l)

(g,

()) _ p(O)(g7.])
o,
P, (g.))

- PY(g.))

p*(g.))

s p*(g.)) N
STV
Pb (g7.])

PJ(g.))

— p":(g,j.) " p’:(g,j.) . 15)
P (g.))  Py(g.j)

Similarly,

g=1
Sim=1- f POQVi(A+ T~ -Tdg.  (16)
=0

g=

And, of course,

g=1
s=1-
g=0

Equations (14), (16), and (17) are substituted into Eq.
(11). Then, we use the fact that

[V +(1-a)V]=1. (18)

PV(g)Adg. (17)

See Eq. (12).
This yields

=1
(Asy =- aj( J POVt 7*°>)dg) -(1-a)
g=0

=1
x( f POV - 7*0))dg>- (19)

g=0

The term A no longer shows up in the equation. The result
can further be simplified using Eq. (18):

g=1
(ASY = f ) PO(ITO — a;V* TP — (1 - ) VT 1dg.
o=

(20)

This is the main equation for our strategy. Every time we
want to decide the configuration for which the next Bernoulli
trial should be made, we evaluate (ASY for all configurations
j and conduct the Bernoulli trial where —(AS) is largest.

021108-3



SCHMIDT, RIES, AND SPIRKL

0.7
0.6
0.5
0.4
0.3
0.2
0.1

merit g

10 20 30 40 50
configuration i

FIG. 1. The example function.

(The minus is because the smaller the entropy, the more
knowledge one has.) In practice it is not necessary to calcu-
late the (AS) before every Bernoulli trial. Rather, we assume
that the change in (AS) is small when a small number of
Bernoulli trials are made for a certain configuration. By “a
small number” we mean small compared with the total num-
ber of Bernoulli trials. Hence, we proceed as follows: we
calculate the (AS), then we make a small number of Ber-
noulli trials for the configuration for which —(AS)Y is largest,
then we recalculate the (ASY, and so on.

III. TEST RESULTS
A. Applications

The application we have in mind is to choose the best
from a set of virtual optical systems for illumination via
Monte Carlo ray tracing. This is a standard procedure in
optical design. Sending a randomly chosen ray through a
virtual illumination optic is a Bernoulli trial. If the ray strikes
the target surface, the outcome is “true,” otherwise it is
“false.” Hence, every one of these illumination optic systems
is an instruction on how to do a Bernoulli trial, and hence
can be a b;. If the illumination systems are a discrete subset
of a parametrized set, the q; is the parameter vector which
specifies the illumination system b,. Otherwise, one can think
of the a; simply as names of the illumination systems. By
stochastic optimization we aspire to find the illumination
system which directs more radiation onto the target than any
of the others.

B. A naive strategy used for comparison

We use a naive and simple strategy for solving the intro-
duced optimization problem as a benchmark for the informa-
tion entropy strategy. The simple strategy carries out the
same number of Bernoulli trials at all configurations. From
the basic theorem of Monte Carlo integration, the necessary
number of Bernoulli trials per configuration is calculated.
[6]. Finding out the probability g; of a “true” result for a
Bernoulli trial by repeatedly performing Bernoulli trials is
equivalent to integrating a function f(x) with x € [0,1] and
fx)=1|x<g; and f(x)=0|x>g; with the Monte Carlo
method and determining g; from the result.

An error estimate for the integral is

PHYSICAL REVIEW E 75, 021108 (2007)

FIG. 2. Optimization with information entropy strategy. The
three graphs plot the probability distribution for the optimum
Popi(g.i) for different stages of the optimization process. In each
graph, the example function is shown with dots in the horizontal
plane and the probability distribution for the optimum p,(g,i) is
plotted in the vertical direction for each of the 50 configurations as
a function of the merit function value. The plot in (a) is based on
300 Bernoulli trials, the plot in (b) on 500, and the plot in (c) on
10*. The information entropy of the probability distribution for the
optimum shown in (c) is =2.12.
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FIG. 3. This graph shows the probability distribution for the
optimum calculated from 10* Bernoulli trials, distributed according
to the naive strategy among the configurations of the example func-
tion. The probability distribution for the optimum p(,pt(g,i) is plot-
ted for each of the 50 configurations as a function of the merit
function value. In the horizontal plane the example function is
shown with dots. The information entropy of the probability distri-
bution for the optimum shown is —1.15.

[P
N

Here, N is the number of randomly chosen points and V is
the volume, over which the integration extends.
The brackets indicate averaging:

FIG. 4. This graph is a magnified section of Fig. 2(c). It shows
the probability distribution for the optimum in the vicinity of its
maximum for the information entropy strategy after 10* Bernoulli
trials. The information entropy of the probability distribution for the
optimum shown is —2.12.
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FIG. 5. This graph is a magnified section of Fig. 3. The infor-
mation entropy of the probability distribution for the optimum
shown is —1.15.

N-1 N-1

=y S fx) wmd (=13 Fe).

i=0

For this error estimation see Ref. [6], chapter 7.
Since xe[0,1], V=1 and because of fe{0,1}, f(x;)
=72(x;), and {(f>)=(f), this yields

i g

,// ) Q

O/;/. T

FIG. 6. This graph shows the probability distribution for the
optimum calculated from 4 X 10* Bernoulli trials, distributed ac-
cording to the naive strategy among the configurations of the ex-
ample function. The probability distribution for the optimum
p(,p[(g,i) is plotted for each of the 50 configurations as a function of
the merit function value. In the horizontal plane the example func-
tion is shown with dots. The information entropy of the probability
distribution for the optimum shown is —2.02.
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FIG. 7. This graph is a magnified section of Fig. 6. It shows the
details of the peak. The information entropy of the probability
distribution for the optimum shown is —2.02.

s |1
€= \"(f) _ <f>2 \/j
N
Because (f) € [0,1], the maximum of \{f)—(f)? is 0.5.

If (f) is not known in advance, the error estimate is
1
€max = —2 V”N.
To get an error smaller than €,,,, the necessary number of
Bernoulli trials per configuration is

1

N=——.
463“3)(

C. Test function

We tested the information entropy strategy by applying it
to an example function defined for a discrete set of 50 con-
figurations distinguished by one parameter: a;=0.02;a,

PHYSICAL REVIEW E 75, 021108 (2007)

=0.04;...;a50=1. The corresponding ‘true’ merit function
values are chosen to express two peaks of different heights.

0.2 [ (“"_0'3)2}03 { (a[—0.8)2}+04
=0.2exp| - 3exp| - 4,
8i P 0.1 P 0.1

with i e {1;...;50}. This is called the example function, see
Fig. 1. A Bernoulli trial for configuration a; is made like this:
a random number between O and 1 is generated. If it is
smaller than g, the result is true, otherwise the result is false.
These instructions are called b;. A total of 10 000 Bernoulli
trials were distributed among the configurations according to
the information entropy strategy. We chose to make five Ber-
noulli trials every time the (AS) were calculated. The graphs
in Fig. 2 show the probability distribution for the optimum in
different stages of the optimization process. In the beginning,
one cannot see from the probability distribution for the
optimum where the maximum lies, or what value it has, but
after 10 000 Bernoulli trials, the location and value of the
maximum are found with good precision.

D. Performance comparison

Figure 2 illustrates the evolution of the probability distri-
bution for location and value of the optimum in the course of
an optimization following the information entropy strategy.
Figure 2(a) refers to the result after a total of 300 Bernoulli
trials were completed, Fig. 2(b) after 500 experiments, and
finally Fig. 2(c) after 10* Bernoulli trials were carried out.
The information entropy of the probability distribution for
the optimum at this point was —2.12. Note that the probabil-
ity distribution for the optimum at the beginning [Fig. 2(a)]
shows two peaks after which it settles at the higher peak.

We have compared the information entropy strategy to the
naive strategy.

Figure 3 shows the probability distribution for the opti-
mum calculated from 10* Bernoulli trials, which were dis-
tributed according to the naive strategy among the configu-
rations of the example function. The information entropy of
this probability distribution for the optimum is —1.15.

Note that after an equal number of evaluations the naive
strategy correctly identifies the global maximum of the test
function, however, the distribution is much broader, i.e., the

TABLE 1. Results of the obtimization of the implicit example function with 50 configuarations. (a) Naive

strategy, (b) information entropy strategy.

(a) (b)
Number of Number of
Bernouil trials Computing time Bernoulli trials Computing time
in 103 Entropy in minutes in 103 Entropy in minutes
0 0.98 0 0 0.98 0
50 -3.586 5 25 -0.771
100 -3.939 11 50 -3.700 9
150 -4.120 16 75 -5.198 16
200 —4.251 22 100 -5.516 26
250 —4.382 28

021108-6



STRATEGY BASED ON INFORMATION ENTROPY FOR... PHYSICAL REVIEW E 75, 021108 (2007)

TABLE II. Results of the optimization of the implicit example function with 200 configurations. (a) Naive
strategy, (b) information entropy strategy.

(@) (b)
Number of Number of
Bernoulli trials Computing time Bernoulli trails Computing time

in 103 Entropy in minutes in 103 Entropy in minutes

0 0.995 0 0 0.995 0

200 -3.053 22 25 0.994 7

400 -3.930 45 50 0.993 14

600 —-4.087 67 75 0.992 20

800 -4.186 89 100 0.957 28

1000 -4.321 112 125 0.880 36

150 0.621 45

175 -0.271 56

200 —-3.440 67

225 -5.138 87

maximum is identified with less precision. This is illustrated ~ roughly matched the results of Fig. 2(c). See Figs. 6 and 7.
in more detail in Figs. 4 and 5, which enlarge the relevant At this point the information entropy was -2.02. We
range close to the optimum of the Figs. 2(c) and 3. found that a total of 4 X 10* Bernoulli trials were necessary.

For a better comparison, we allowed the naive strategy This illustrates the superiority of the information entropy
to continue until the probability distribution for the optimum strategy.

TABLE III. Results of the optimization of the implicit example function with 800 configurations. (a)
Naive strategy, (b) information entropy strategy.

(a) (b)
Number of Number of
Bernoulli trials Computing time Bernoulli trials Computing time
in 103 Entropy in minutes in 103 Entropy in minutes
0 0.999 0 0 0.999 0
800 -2.355 105 100 0.999 67

1600 -2.576 205 200 0.998 144
2400 -2.778 303 300 0.998 144
3200 -2.710 402 400 0.008 321
4000 -2.878 500 500 0.997 427
4800 -3.101 599 600 0.994 544
5600 -3.503 697 700 0.928 675
6400 -3.708 795 800 —-2.608 816
7200 -3.807 893 900 -3.973 1092
8000 -3.944 992 1000 -4.394 1525
8800 -3.825 1091 1100 —4.724 2141
9600 -3.960 1189

10 400 -3.972 1289

11200 -4.159 1389

12 000 -4.201 1487

12 800 —4.222 1586

13 600 —4.124 1686

14 400 -4.061 1787

15 200 -3.984 1887

16 000 -4.197 1991
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number of Bernoulli trials

FIG. 8. Optimization of the degenerate test function with infor-
mation entropy strategy. p,(15) is the total probability that the glo-
bal maximum is at 0.3, whereas p,(40) is the total probability that
the global maximum is at 0.8. This graph shows In[p,(15)/p,(40)]
as a function of the number of Bernoulli trials. The total number of
Bernoulli trials is 3.61 X 10°.

E. Computation time

The computation time used by the information entropy
strategy is split between the time needed for carrying out the
Bernoulli trials and the overhead needed to evaluate the
expected entropy gain in order to decide which configuration
to examine next. For this decision Eq. (20) needs to be evalu-
ated for each configuration. Thus the time needed is roughly
proportional to the number of configurations, i.e., the size of
the system.

In the examples presented in Sec. III D the stochastic
function used allowed a very fast evaluation of Bernoulli
trials. Furthermore, the expected entropy gain was evaluated
very frequently (every five Bernoulli trials). Consequently,
the overhead dominated the computation time in these ex-
amples. However, this is not to be expected in practical
applications, for several reasons:

(a) Additional Bernoulli trials change the expected
entropy less if many trials have been previously performed.
Therefore the number of Bernoulli trials carried out between
consecutive evaluations of the expected entropy gain should
increase in the course of the optimization, eventually render-
ing the computation time spent for Bernoulli trials dominant.

(b) For practical applications the computation in-
volved in carrying out Bernoulli trials is probably more time
consuming than in the simple tests used here. In particular
we envision using information entropy strategy for the de-
sign of optical illumination systems, where performance is

g o
& 096
X

in 0.94
E 092

051 152 25 3 35x10°

number of Bernoulli trials

FIG. 9. Optimization of the degenerate test function with infor-
mation entropy strategy. p,(15) is the total probability that the glo-
bal maximum is at 0.3, whereas p,(40) is the total probability that
the global maximum is at 0.8. This graph shows the sum p,(15)
+p/(40) as a function of the number of Bernoulli trials. The total
number of Bernoulli trials is 3.61 X 10°.
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TABLE IV. Optimization of the degenerate test function with
information entropy strategy. The table shows the total probability
for the two maximal configurations for different numbers of Ber-
noulli trials.

Number of

Bernoulli trials p,(15) p,(40)
1x10° 0.830 0.165
22X 100 0.982 0.016
3x10° 0.439 0.560
3.61 X 10° 0.389 0.610

assessed via Monte Carlo ray tracing. In this field a Bernoulli
trial would be equivalent to tracing a ray through an optical
system which involves finding intersections at each optical
surface. The duration for complex systems which may
involve freeform surfaces may well be over 1 ms/ray.

(c) We did not code the evaluation of the expected
entropy gain in the most efficient way yet. For example the
term Pgo in Eq. (20) may be evaluated recursively much
faster that directly via Eq. (3) as currently done. It is also
possible that in the course of optimization, some configura-
tions are recognized to be so uninteresting that they need not
be considered at each evaluation. We plan to investigate
these issues in future work.

In order to compare the information entropy strategy with
the naive strategy in terms of computation time in a remotely
realistic way with our present code, we simply used a sto-
chastic function, which was implicitly defined via numerical
root finding, such that the time needed for the Bernoulli trials
was much longer. We used this implicit test function with
systems of 50, 200, and 800 configurations. The results are
summarized in Tables I-III. After an initial phase, during

0.66
0.655
0.65 .~

FIG. 10. Optimization with the information entropy strategy.
The graph shows the probability distribution for the optimum for
the degenerate test function after 3.61 X 10° Bernoulli trials. The
probability distribution for the optimum is negligible outside of the
section shown in the graph.
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which the naive strategy is faster, the information entropy
Strategy is faster in reducing the entropy of the probability
distribution for the maximum. The duration of this initial
phase increases with system size.

This finding is easily explained: Initially, as a priori
all configurations are equal, the information entropy strategy
coincides with the naive strategy in the choice of where to
evaluate the stochastic function. Therefore the naive strategy
is superior because it has no overhead. After a rough local-
ization of the maximum, the better choice made by the in-
formation entropy strategy offsets the overhead. For larger
systems a rough localization of the maximum takes longer.

F. The special case of two equally high maxima

Up to now, we were only concerned with stochastic func-
tions which have exactly one global maximum. Since in
practical applications the number of maxima is not known
beforehand, it is important to know how the algorithm pro-
ceeds in the case of several equally high local maxima. Con-
sequently, we tested the information entropy strategy on a
test function with two equally high maxima, which we call
the degenerate test function.

The degenerate test function is

0.25 |: (a,-—().
;= U, exp| —
8i p 0.1

+04, (21)

for the parameter values a;=0.02;a,=0.04;...;as5,=1.

We want to ensure that the information entropy strategy
identifies both maxima, and not only one of them. For each
of the maxima we integrate the probability distribution for
the optimum p,,(g,i) over the merit function value g, thus
getting the total probability p,(i) that this configuration is
better than all others. p,(i) is a function of the number of
Bernoulli trials, since the probability distribution for the op-
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timum is a function of the number of Bernoulli trials. Both of
the maxima are found if p,(i) is of the same order of magni-
tude for both of the maxima and small for all the other con-
figurations. The result is shown in Figs. 8§ and 9 and in Table
Iv.

From Figs. 8 and 9 two things can be learned. First, one
can see that for sufficiently large numbers of Bernoulli trials
p15) and p,(40) are of the same order of magnitude and all
other p,(i) are small compared to p,(15) and p,(40), since the
sum of all p,(i) is one. That means that both maxima were
found by the information entropy strategy (see Fig. 10). Sec-
ond, the number of Bernoulli trials should not be too small.
If the calculation had been stopped after 2 X 10° Bernoulli
trials, the maximum ay, perhaps had been overlooked (see
Table 1V).

IV. CONCLUSIONS

Information entropy appears to be a useful criterion for
the optimization of stochastic functions. However, it is im-
portant in the context of optimization to base the information
entropy on the probability distribution for the optimum
rather then the probability distribution of the stochastic func-
tion itself. The strategy presented in this work appears to
hold good promise as a key ingredient for a global optimi-
zation algorithm for stochastic functions. In future work we
plan to extend and test this concept for continuous parameter
spaces of higher dimensions.
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